메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
이경원 (한양대학교)
저널정보
경희대학교 비교문화연구소 비교문화연구 비교문화연구 제55권
발행연도
2019.1
수록면
83 - 107 (25page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
This paper focuses on collecting and examining (types of) variant forms of Chinese characters written in nine old Korean maps, and correcting problems in using the “searching for original material” service at the website of Kyujanggak. Types of variant forms in the maps are classified as follow: i) Adding or subtracting a few strokes, ii) Simplifying the part of the characters, iii) Coding the parts of the characters, iv) Coding the half of the characters, v) Replacing the original character with another character with the same sound, vi) Adopting only the outlines of the characters, and vii) Replacing phonetic-semantic compounds (形聲) with the late combined ideograms (會意). Features of various types of variant forms are summarized as below: i) Succession of the existing variant forms, ii) Development of the variant forms, and iii) Evolution of the variant forms. In addition, I also find out the existence of new routes of the genesis of new variant forms. I also discovered errors in “searching place names” for the Map Book of Korea (靑邱要覽) provided by the website of the Kyujanggak Institute For Korean Studies. For example, the searching service renders “魚物广” and “米广” of the original map as “魚物廣”, “米廣”, respectively, where 广 in the Map Book of Korea is, in fact, the variant form of 廛. Furthermore, “蚕(蠶)頭” is rendered as “천두”, “관공서(寺)” as “~사”, “廣智門” as ‘문지경’ and so on. Last but not least, this variant form (广) is assumed to be the highly rare variant form that is not found in variant forms used in Chinese literature. It can be considered as an evolutional variant form that the innovational way to render the variant forms of Korea is applied.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0