메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
윤훈상 (고려대학교) 허재혁 (고려대학교) 김정섭 (고려대학교) 강필성 (고려대학교)
저널정보
대한산업공학회 대한산업공학회지 대한산업공학회지 제48권 제1호
발행연도
2022.2
수록면
91 - 104 (14page)
DOI
10.7232/JKIIE.2022.48.1.091

이용수

DBpia Top 10%동일한 주제분류 기준으로
최근 2년간 이용수 순으로 정렬했을 때
해당 논문이 위치하는 상위 비율을 의미합니다.
표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
Text-to-SQL is one of semantic parsing methods that converts natural language questions into SQL queries, and it aims to extract data from any relational database without knowledge of SQL query configuration. Although development of large amounts of datasets (WikiSQL, SPIDER) and development of pre-trained language models (BERT) contributed to the improvement of Text-to-SQL performance in English, language-specific dataset construction and model research have not been much progressed. Therefore, this study proposes a multilingual BERT-based Text-to-SQL methodology that converts the natural language question in Korean into SQL query for an English database. To this end, four strategies for translating Korean queries into English were explored, and their effectiveness was verified by applying each strategy to three text-to-SQL model structures. As a result of the experiment, it was confirmed that it showed a significant SQL generation performance even for Korean questions. The proposed methodology is meaningful in that it shows semantic inferences between database tables, column information, and questions composed of different languages are possible, and it is expected to support efficient database access by Korean users who lack proficiency in writing SQL queries.

목차

1. 서론
2. 대표적 Text-to-SQL 데이터셋 및 모델
3. 한국어 WikiSQL 데이터셋 구축
4. Experiments
5. 결론
참고문헌

참고문헌 (30)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2022-530-000196211