메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국전자통신연구원 [ETRI] ETRI Journal ETRI Journal 제44권 제4호
발행연도
2022.8
수록면
0 - 0 (0page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Taxi-demand forecasting and hotspot prediction can be critical in reducing response times and designing a cost effective online taxi-booking model. Taxi demand in a region can be predicted by considering the past demand accumulated in that region over a span of time. However, other covariates—like neighborhood influence, sociodemographic parameters, and point-of-interest data—may also influence the spatiotemporal variation of demand. To study the effects of these covariates, in this paper, we propose three models that consider different covariates in order to select a set of independent variables. These models predict taxi demand in spatial units for a given temporal resolution using linear and ensemble regression. We eventually combine the characteristics (covariates) of each of these models to propose a robust forecasting framework which we call the combined covariates model (CCM). Experimental results show that the CCM performs better than the other models proposed in this paper.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0