메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이근애 (동아대학교)
저널정보
한국아동학회 아동학회지 아동학회지 제43권 제3호
발행연도
2022.8
수록면
289 - 301 (15page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
Objectives: This study aims to identify the types of latent classes of children’s social competence, and to develop a model using machine learning to predict the type and identify relatively important variables.
Methods: Data were collected from 466 children aged three to five years and their mothers. Children’s social competence was classified by level. Latent class analysis, machine learning model construction, and performance evaluation were performed using R 3.6.1 and R-Studio 1.2.5033. The machine learning algorithms used were logistic regression, lasso logistic regression, random forest, and gradient-boosted decision tree models.
Results: First, according to the characteristics of the latent class of children’s social competence, it was classified into two types: ‘high level’ and ‘low level’. Second, a machine learning algorithm was applied according to the latent class. The best performing model was the random forest model. Third, the most important variable in predicting the social competence type was identified as ‘harm avoidance’ in the children’s temperament. Fourth, another major variable was a ‘shift’ in the children’s executive functions.
Conclusion: This study is meaningful as it suggests the possibility of predicting and discriminating children’s social competence and various developmental aspects by applying machine learning, the latest technique, to predict the types of children’s social competence.

목차

Introduction
Methods
Results
Discussion
References
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2022-598-001692932