메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김준성 (Sungkyunkwan University) 조아라 (Sungkyunkwan University) 오하영 (성균관대학교)
저널정보
한국정보통신학회 한국정보통신학회논문지 한국정보통신학회논문지 제26권 제11호
발행연도
2022.11
수록면
1,599 - 1,607 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
저출산과 노령화로 보험 수요가 지속해서 감소하고 있다. 나아가 언택트 소비가 주류가 되면서 기존의 대면 서비스를 중심으로 한 보험상품 마케팅은 실효성이 크게 떨어지고 있다. 그러므로 보험업계는 비대면 서비스를 기반으로 한 새로운 마케팅이 절실한 시점이다. 확보된 내 외부 및 공공데이터를 바탕으로 보험 트렌드를 반영한 맞춤형 전략을 통해 기존 고객의 로열티를 강화하고 신규 고객을 확보할 수 있는 개인 맞춤형 보험 상품 추천시스템을 제안하고자 한다. 보험회사 데이터베이스에 등록된 고객을 대상으로 공공 데이터(시군구별 총인구수, 건강생활 실천율, 고령인구 비율, 출생률, 노인여가복지 수, 연령대별 경제활동참가율 등), 고객 개인정보 및 기 계약 정보를 사용하여 인구통계학 기반과 모델 기반 추천시스템을 설계하였다. 인구통계학 기반 추천시스템은 군집화된 고객 내 코사인 유사도를 계산하여 유사도가 높은 고객들이 많이 가입한 보험상품을 추천하였다. K-means를 이용한 군집화 방식과 고객의 지역, 성별 및 연령대 기준의 Segmentation 방식으로 각각 수행하였다. 모델 기반 추천시스템은 Decision Tree, Random Forest Classifier를 사용하여 각각 추천시스템을 설계하였다.
본 연구 결과 군집 된 고객 간 코사인 유사도를 활용한 인구통계학 기반 추천시스템의 성능이 가장 우수하였다. 이는 개인의 특성(성별, 나이 등) 및 환경적인(경제력, 직업 거주지역 등) 요소에 따라 보험 상품을 선택하기 때문에 고객 간 유사도가 보험 추천시스템의 성능에 주요 요소인 것을 보여준다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 본론
Ⅲ. 결론
REFERENCES

참고문헌 (11)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0