메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김은성 (고려대학교) 주수빈 (고려대학교 대학원 응용통계학과) 이찬형 (고려대학교 경제통계학부 빅데이터) 전수영 (고려대학교)
저널정보
한국자료분석학회 Journal of The Korean Data Analysis Society Journal of The Korean Data Analysis Society 제24권 제2호
발행연도
2022.4
수록면
585 - 597 (13page)
DOI
10.37727/jkdas.2022.24.2.585

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
최근 텍스트 감정 분석에 관한 관심이 높아지고 있다. 텍스트 감정 분석 방법은 빈도수를 이용하는 방법, 토픽모델링을 이용하는 방법, 임베딩을 이용하는 방법 등 다양하게 발전해 왔다. 텍스트 종류 중 영미 시는 분석 데이터로서 주목을 덜 받고 있지만, 시의 특성상 형식도 자유롭고 다양하며 시적 허용 등 비문법적인 표현이 있어 학습 데이터로 적합하다. 일반적으로 시인들이 공통으로 직시하는 것은 인간 사회에 내재하는 모순과 억압이기 때문에 작품에서 먼저 발현하는 것은 좌절, 절망, 분노이다. 따라서 본 연구는 영미 시에서 드러난 좌절, 절망, 분노의 감정을 분석하기 위하여 패스트텍스트로 임베딩 후 메모리 네트워크로 감정을 분류한다. 메모리 네트워크는 QA 신경망 모델 중 하나로 학습 데이터는 텍스트, 질문, 답변이 필요하다. 인문학 전문가에 의해 구축된 질문은 감정 분류를 목적으로 각 감정을 검증하기 위하여 만들었고, 질문에 대한 답변 역시 인문학 전문가가 라벨링 하였다. 구축한 데이터로 본 연구가 제안한 모델의 성능을 알아보기 위하여 메모리 네트워크를 사용하지 않은 모델과 비교해 보았다. 결과적으로 메모리 네트워크를 사용한 모델의 정확도가 가장 좋은 것을 확인하였다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0