메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Jina Song (University of Southern California) Elsi Kaiser (University of Southern California)
저널정보
담화·인지언어학회 담화와인지 담화와인지 제30권 제2호
발행연도
2023.5
수록면
17 - 50 (34page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This study aims to investigate how speakers of a language with a relatively fixed word order learn scrambled order in L2. To this end, we conducted a naturalness rating task accompanied by a picture-writing task in Korean SOV (canonical order) and OSV (scrambled order) sentences for L1 English speakers learning Korean. Based on the Full Transfer/Full Access (FTFA) acquisition model (Schwartz and Sprouse 1996), we explored three parameters associated with the OSV order to determine whether and how L1 transfer is affected by different representational levels of each of these parameters: (i) the Head Directionality Parameter and (ii) the Multiple-Specifier Parameter are related to the grammar-internal domain (syntax), while (iii) the Given-before-New parameter is related to the grammar-external domain (discourse). The results show that for the grammar-internal parameters ((i) and (ii)), L2 learners are restructuring their interlanguage grammar towards the L2 grammar by accessing UG, supporting the FTFA hypothesis. On the other hand, for the grammar-external parameter (iii), our results are compatible with the hypothesis that given-before-new (discourse) knowledge is learned by accessing UG without L1 transfer. These results may imply that internal syntactic knowledge is acquired first, but external discourse constraints related to discourse are acquired later.

목차

1. Introduction
2. Acquisition of OSV word order in Korean
3. L1 Trasferability
4. Research Questions and general predictions
5. Method
6. Results
7. General Discussion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0