메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이상준 (인하대학교) 김학일 (인하대학교)
저널정보
한국방송·미디어공학회 방송공학회논문지 방송공학회논문지 제28권 제3호
발행연도
2023.5
수록면
329 - 332 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
딥러닝 네트워크를 이용한 3차원 객체 인식 기술은 자율주행 기술 개발에 있어 대상 객체의 종류 뿐만 아니라 센서로부터의 거리도 인식할 수 있기 때문에 장애물 탐지를 위해 많이 개발되고 있다. 하지만 3차원 객체 인식 모델의 경우 원거리 객체에 대한 탐지 성능이 근거리 객체에 대한 인식 성능보다 낮아 차량의 안전을 확보하는 데에 치명적인 문제가 발생할 수 있다. 본 논문에서는 가상의 3차원 차량 데이터를 생성해 모델 학습에 사용되는 데이터셋에 추가하여 3차원 객체 인식 모델의 성능, 특히 원거리의 객체에 대한 성능을 향상시키는 기술을 소개한다. 3차원 라이다 센서 데이터의 특성을 활용한 구면 점 추적 기법을 사용하여 실제 차량과 매우 유사한 가상 차량을 생성하였고, 생성한 가상 차량 데이터를 사용하여 원거리뿐만 아니라 모든 거리 영역 범위에서의 객체 인식 성능을 향상시킴으로써 가상 데이터의 학습 유효성을 입증하였다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 구면 점 추적 기법
Ⅲ. 실험 및 결과
Ⅳ. 결론
참고문헌 (References)

참고문헌 (10)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-567-001554076