메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김동현 (경북대학교) 이동훈 (경북대학교) 김아로 (경북대학교) Vani Priyanka Gali (경북대학교) 박상효 (경북대학교)
저널정보
한국방송·미디어공학회 방송공학회논문지 방송공학회논문지 제28권 제3호
발행연도
2023.5
수록면
333 - 336 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 자연어 처리에서 사용되던 트랜스포머 모델이 이미지 초해상화 분야에서도 적용되면서 좋은 성능을 보여주고 있다. 그러나 이러한 트랜스포머 기반 모델들은 복잡하고 많은 학습 파라미터를 가지고 있어 많은 하드웨어 자원을 요구하기 때문에 작은 모바일 기기에서는 사용하기 어렵다는 단점을 가지고 있다. 따라서 본 논문에서는 트랜스포머 기반 초해상화 모델의 크기를 효과적으로 줄일 수 있는 지식 증류 기법을 제안한다. 실험 결과 트랜스포머 블록의 개수를 줄인 학생 모델에서 제안 기법을 적용해 교사 모델과 비슷한 성능을 내거나 더 높일 수 있음을 확인하였다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 제안 방법
Ⅲ. 모델 실험
Ⅳ. 결론
참고문헌 (References)

참고문헌 (9)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-567-001554081