메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Wonbin Kim (Yonsei University)
저널정보
한국응용언어학회 응용언어학 응용언어학 제39권 제2호
발행연도
2023.6
수록면
3 - 34 (32page)
DOI
10.17154/kjal.2023.6.39.2.3

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This study presents how long short-term memory (LSTM), an artificial neural network in deep learning, is employed for the analysis of the semantic prosody of the Korean neologism kay-. The neologism kay- is mainly attached to negative words. However, its combinations with positive words are frequently observed today. In light of this phenomenon, this study probed words where kay- was attached to determine whether there has been a change in its semantic prosody. Specifically, Korean tweets including kay from 2010 to 2019 were scraped, and ten yearly Twitter corpora were constructed based on the scraped tweets. After words with kay- were extracted from each corpus, they were sorted into positive and negative categories using LSTM trained to classify words by sentiment. The token frequencies of every positive word were counted and added up for each year. The same process was repeated for negative words. The analysis of token frequencies from the ten corpora indicated that the use of positive words has gradually increased. The result demonstrates that the semantic prosody of kay- is shifting from negative toward positive. This study showed for the first time how artificial intelligence (AI) could be applied to semantic prosody research and confirmed the possibility of AI as a new method for semantic prosody analysis.

목차

Ⅰ. INTRODUCTION
Ⅱ. PREVIOUS STUDIES ON SEMANTIC PROSODY
Ⅲ. METHODOLOGY
Ⅳ. RESULTS
Ⅴ. METHOD VALIDATION
Ⅵ. DISCUSSION
Ⅶ. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0102-2023-701-001793779