메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김시호 (경상국립대학교) 황세운 (경상대학교)
저널정보
한국농공학회 한국농공학회논문집 한국농공학회논문집 제65권 제3호
발행연도
2023.5
수록면
69 - 82 (14page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Representative meteorological data of the rural water district, which is the spatial unit of the study, was produced using the grid-based national standardRCP scenario rainfall data provided by the Korea Meteorological Administration. The retrospective reproducibility of the climate model scenario datawas analyzed, and the change in climate characteristics in the water district unit for the future period was presented. Finally the data characteristicsand differences of each meteorological element according to various spatial resolution conversion and post-processing methods were examined. As a main result, overall, the distribution of average precipitation and R95p of the grid data, has reasonable reproducibility compared to the ASOSobservation, but the maximum daily rainfall tends to be distributed low nationwide. The number of rainfall days tends to be higher than the station-basedobservation, and this is because the grid data is generally calculated using the area average concept of representative rainfall data for each grid. In addition, in the case of coastal regions, there is a problem that administrative districts of islands and rural water districts do not match. and In thecase of water districts that include mountainous areas, such as Jeju, there was a large difference in the results depending on whether or not high rainfallin the mountainous areas was reflected. The results of this study are expected to be used as foundation for selecting data processing methods when constructing future meteorological data forrural water districts for future agricutural water management plans and climate change vulnerability assessments.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0