메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한신경과학회 Journal of Clinical Neurology Journal of Clinical Neurology 제19권 제1호
발행연도
2023.1
수록면
36 - 43 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Background and Purpose This study aimed to determine the ability of deep learning using convolutional neural networks (CNNs) to diagnose transient global amnesia (TGA) based on electroencephalography (EEG) data, and to differentiate between patients with recurrent TGA events and those with a single TGA event. Methods We retrospectively enrolled newly diagnosed patients with TGA and healthy controls. All patients with TGA and the healthy controls underwent EEG. The EEG signals were converted into images using time-frequency analysis with short-time Fourier transforms. We employed two CNN models (AlexNet and VGG19) to classify the patients with TGA and the healthy controls, and for further classification of patients with recurrent TGA events and those with a single TGA event. Results We enrolled 171 patients with TGA and 68 healthy controls. The accuracy and area under the curve (AUC) of the AlexNet and VGG19 models in classifying patients with TGA and healthy controls were 70.4% and 71.8%, and 0.718 and 0.743, respectively. In addition, the accuracy and AUC of the AlexNet and VGG19 models in classifying patients with recurrent TGA events and those with a single TGA event were 71.1% and 88.4%, and 0.773 and 0.873, respectively. Conclusions We have successfully demonstrated the feasibility of deep learning in diagnosing TGA based on EEG data, and used two different CNN models to distinguish between patients with recurrent TGA events and those with a single TGA event.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0