메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Aylin Bayındır Gümüş (Kırıkkale University) Murat Açık (Fırat University) Sevinç Eşer Durmaz (Kırıkkale University)
저널정보
한국식품영양과학회 Preventive Nutrition and Food Science Preventive Nutrition and Food Science Vol.29 No.2
발행연도
2024.6
수록면
199 - 209 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This study aimed to compare the nutritional quality of beverages sold in Türkiye according to their labeling profiles. A total of 304 nonalcoholic beverages sold in supermarkets and online markets with the highest market capacity in Türkiye were included. Milk and dairy products, sports drinks, and beverages for children were excluded. The health star rating (HSR) was used to assess the nutritional quality of beverages. The nutritional quality of beverages was evaluated using a decision tree model according to the HSR score based on the variables presented on the beverage label. Moreover, confusion matrix tests were used to test the model’s accuracy. The mean HSR score of beverages was 2.6±1.9, of which 30.2% were in the healthy category (HSR≥3.5). Fermented and 100% fruit juice beverages had the highest mean HSR scores. According to the decision tree model of the training set, the predictors of HSR quality score, in order of importance, were as follows: added sugar (46%), sweetener (28%), additives (19%), fructose-glucose syrup (4%), and caffeine (3%). In the test set, the accuracy rate and F1 score were 0.90 and 0.82, respectively, suggesting that the prediction performance of our model had the perfect fit. According to the HSR classification, most beverages were found to be unhealthy. Thus, they increase the risk of the development of obesity and other diseases because of their easy consumption. The decision tree learning algorithm could guide the population to choose healthy beverages based on their labeling information.

목차

ABSTRACT
INTRODUCTION
MATERIALS AND METHODS
RESULTS
DISCUSSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-151-24-02-090046954