메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
ChanJong Im (Pai Chai University) DoWan Kim (Pai Chai University) Thomas Mandl (University of Hildesheim)
저널정보
한국콘텐츠학회(IJOC) International JOURNAL OF CONTENTS International JOURNAL OF CONTENTS Vol.13 No.2
발행연도
2017.6
수록면
66 - 74 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Patent classification is becoming more critical as patent filings have been increasing over the years. Despite comprehensive studies in the area, there remain several issues in classifying patents on IPC hierarchical levels. Not only structural complexity but also shortage of patents in the lower level of the hierarchy causes the decline in classification performance. Therefore, we propose a new method of classification based on different criteria that are categories defined by the domain’s experts mentioned in trend analysis reports, i.e. Patent Landscape Report (PLR). Several experiments were conducted with the purpose of identifying type of features and weighting methods that lead to the best classification performance using Support Vector Machine (SVM). Two types of features (noun and noun phrases) and five different weighting schemes (TF-idf, TF-rf, TF-icf, TF-icf-based, and TF-idcef-based) were experimented on.

목차

ABSTRACT
1. INTRODUCTION
2. METHODOLOGY
3. EXPERIMENTS
4. RESULTS
5. CONCLUSION AND FUTURE WORK
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-090395890