메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Nguyen Huu-Manh (Department of Pharmaceutics, Hanoi University of Pharmacy, Vietnam) Duong The-Khang (Department of Pharmaceutics, Hanoi University of Pharmacy, Vietnam) Nguyen Van-Khuyen (Department of Pharmaceutics, Hanoi University of Pharmacy, Vietnam) Nguyen Thi-Khanh-Ly (Department of Pharmaceutics, Hanoi University of Pharmacy, Vietnam) Dong Thi-Hoang-Yen (Department of Pharmaceutics, Thai Nguyen University of Medicine and Pharmacy, Vietnam) Nguyen Canh-Hung (Hanoi University of Pharmacy, Vietnam) Tung Nguyen-Thach (Hanoi University of Pharmacy, Vietnam)
저널정보
한국약제학회 Journal of Pharmaceutical Investigation Journal of Pharmaceutical Investigation Vol.54 No.2
발행연도
2024.3
수록면
229 - 247 (19page)
DOI
10.1007/s40005-023-00660-9

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Purpose A two-step experimental design was used to develop a lornoxicam (LOR)-loaded topical hydrogel patch. We specifically focused on the simultaneous effect of the ion pair formation agent (triethanolamine [TEA]) and the chemical enhancer (cremophor RH40 [RH40]) on flux and conducted physicochemical studies and skin physiology assessments to obtain further information. Methods Drug-in-adhesive patches were fabricated using a micrometer-adjustable film applicator. The applied Design of Experiments (DoE) approach consisted of the Fractional Factorial Resolution V + design and the Central Composite Face design established by the MODDE® 12.0 software. Molecular-level drug-excipient interactions were investigated using infrared (IR) and proton nuclear magnetic resonance (1H NMR) spectroscopy. The effects on skin physiological function was assessed using DermaLab Combo. Results DoE results revealed that TEA enhanced flux by 3.14-fold, whereas RH40 reduced it by 4.62-fold. The addition of RH40 resulted in the disappearance of the proton peak within the region of 12–13 ppm, suggesting competition for hydrogen bonding with LOR between TEA and RH40. The optimized formulation (4% TEA, 0% RH40, and 0.2% Al(OH)3) increased skin hydration by 6.20-fold. Opposing effects of TEA and RH40 on skin elasticity were observed. Conclusion Expected flux and adhesion strength for the optimized formulation were 7.18 μg·cm–2·h–1 and 11.79 mJ, respectively. Our understanding of the conflicting effects of TEA and RH40 has been advanced. The integrated use of the two-step DoE, physicochemical studies, and skin physiology assessments was proven to be effective in elucidating the simultaneous effects of different permeation-modifying strategies on patches, thus having substantial value for the successful execution of future research endeavors.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0