메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
강남길 (극동대학교)
저널정보
한국중앙영어영문학회 영어영문학연구 영어영문학연구 제66권 제1호
발행연도
2024.3
수록면
101 - 122 (22page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
This article is two-fold. The ultimate goal of this article is to provide a big data analysis of 330 reviews of the movie Noryang and to evaluate the Naive Bayes model, the Random Forests model, the DNN model, and the LSTM model in machine learning and deep learning. A point to note is that the name Yi, Sun-shin was the most widely used by viewers, followed by the word movie, and the word general, in that order. A major point of this article is that the name Yi, Sun-shin and the word movie showed up twice as the first keyword. This in turn implies that these keywords are the most noteworthy ones. The sentiment analysis argues that about 75% of viewers think of the film as well-made and that they were highly satisfied with it. In this paper, we used the Naive Bayes model, the Random Forests model, the DNN model, and the LSTM model and made them predict whether each review is positive or negative. The Random Forests model works well for our data, whereas the Naive Bayes model does not. When learning took place 25 times, the DNN model worked well for our data (its accuracy rate is 82.76%). When it comes to the LSTM model, its accuracy did not improve even though learning took place 9 times. Yet, the LSTM model is slightly better than the DNN model with respect to the accuracy rate of test data.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0