메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Sikandar Ali (Institute of Digital Anti-Aging Healthcare Gimhae) Ali Hussain (Institute of Digital Anti-Aging Healthcare Gimhae) Hee Cheol Kim (u-AHRC Gimhae)
저널정보
한국정보통신학회 한국정보통신학회 종합학술대회 논문집 한국정보통신학회 2024년도 추계종합학술대회 논문집 제28권 제2호
발행연도
2024.10
수록면
35 - 38 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
For many years, pathology has demonstrated a remarkable role in diagnosing cancers from the tissue samples of organs through biopsies and surgeries. With the advent of Whole slide scanners and Artificial intelligence technologies the diagnosis process of cancer has improved significantly in many ways. The cancer diagnosis time and workload of pathologists had been reduced exponentially. Foundation models which are large scale AI models have proved tremendous capabilities in digital pathology taking it to the next level. Foundation models are large scale artificial intelligence-based models which are trained on a plethora of unlabeled diverse data using self-supervised learning or semi-supervised learning approaches. They demonstrate promising potential in learning the intrinsic feature representations of data. This training methodology caters diverse capabilities of the models enabling it to excel in wide range of tasks for example object detection and classification, information retrieval from images, image segmentation and classification, natural language processing, image to text and text to image generation and many more.

목차

ABSTRACT
Ⅰ. Background
Ⅱ. Introduction
Ⅲ. The importance of Foundation Models in Pathology
Ⅳ. Types of Foundation models
Ⅴ. Conclusion and Future Prospects
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0