메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
SANGJIN KIM (KOREA UNIVERSITY) JAI WOO LEE (KOREA UNIVERSITY)
저널정보
한국산업응용수학회 JOURNAL OF THE KOREAN SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS Journal of the Korean Society for Industrial and Applied Mathematics Vol.28 No.4
발행연도
2024.12
수록면
226 - 242 (17page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Hypoxia, possibly leading to increased oxidative stress, is a consequence of metabolic alterations and can influence fetal growth as well as lifelong health. While various methods have been utilized to identify associations of metabolite concentration values with an outcome, hypoxia, studies assessing how the coexistence of ewe metabolites impacts the onset of hypoxia are at a nascent stage. Here, we present a novel approach to identify the associations of ewe metabolites and classify the outcome by including the interactions of ewe metabolites in the network. After using metabolite sub-networks as clusters, we implement lasso for logistic regression to determine the onset of hypoxia. We tested different clustering methods in order to validate the associations of ewe metabolites which may infer the mechanism of significant metabolic processes. We validated, in terms of accuracy and balanced F-score, the performance of classification method to determine whether the onset of hypoxemia is correctly identified. Our study shows that there exist strongly interacting ewe metabolites and that specific metabolites are strongly associated with hypoxia. The proposed approach can be applied to similarly structured metabolite datasets to predict health outcomes.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-25-02-092131497