메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Joonhyun Kim (Hanyang University) Jungsoo Lee (Hanyang University) Wansoo Kim (Hanyang University ERICA)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2024
발행연도
2024.10
수록면
61 - 66 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Hand gestures, a fundamental aspect of human non-verbal communication, are often leveraged in the domain of Human-Machine Interaction (HMI) to implement more user-friendly interfaces. In this study, we propose a Convolutional Neural Network (CNN) model designed for efficient motion gesture recognition, designed to be deployed on a smartwatch, using only one Inertial Measurement Unit (IMU) sensor worn on the wrist. By directly processing low-dimensional motion data on linear acceleration and angular velocity, our model demonstrates high performance using a simplified model structure. Furthermore, we explore the potential of applying a transfer learning approach to our CNN model for novel gesture classification problems. This method demonstrates that a well-trained CNN model’s backbone network effectively extracts motion features necessary for the recognition of new gestures. Validation processes in scenarios with limited data-employing specific training-to-test ratios of 1:3, 1:7, and 1:19-allowed for a comparison of our model’s performance against baseline models trained from scratch. Our approach initially achieves an accuracy rate of 99.48±0.25% in recognizing ten distinct motion gestures through the directly processing raw data on linear acceleration and angular velocity directly. Moreover, the transfer learning model outperformed the baseline model trained from scratch with 95.62±0.99%, 93.23±1.41%, 92.81±1.62% accuracy in learning four new gestures under data limitations, respectively. This study shows that the proposed model maintains high performance with lightweight structure, while also highlighting how transfer learning approach can address the challenges of data collection and set the stage for creating more intuitive and user-centric interaction systems.

목차

Abstract
1. INTRODUCTION
2. BACKGROUND
3. METHODOLOGY
4. EXPERIMENTS & RESULTS
5. DISCUSSIONS
6. CONCLUSIONS
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0