메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Hyunjin Ju Yeon Hak Chung Soonwook Kwon Eun Bin Cho Kyung-Ah Park Ju-Hong Min
저널정보
대한신경과학회 Journal of Clinical Neurology Journal of Clinical Neurology Vol.20 No.4
발행연도
2024.7
수록면
431 - 438 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Background and Purpose Fatigue is common in demyelinating disorders of the central nervous system (CNS), including multiple sclerosis (MS), neuromyelitis optica spectrum disorder (NMOSD), and myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD). We aimed to validate the usefulness of the Functional Assessment of Chronic Illness Therapy–Fatigue (FACIT-F) and the Fatigue Severity Scale (FSS) relative to the Korean version of the Modified Fatigue Impact Scale (MFIS-K) in Korean patients with MS, NMOSD, and MOGAD. Methods There were 294 patients with MS (n=120), NMOSD (n=103), or MOGAD (n=71) enrolled in a prospective demyelinating CNS registry. Fatigue was measured using the FACIT-F, MFIS-K, and FSS. Sleep quality, quality of life, depression, and pain were evaluated using the Pittsburgh Sleep Quality Index (PSQI), 36-item Short-Form Survey (SF-36), and Beck Depression Inventory-II (BDI-II). Results The MFIS-K, FACIT-F, and FSS scores showed high internal consistencies and strong correlations with each other in the MS, NMOSD, and MOGAD groups. The scores on all three fatigue scales were correlated with PSQI, SF-36, and BDI-II results in the three groups. The areas under the receiver operating characteristic curves for the FSS and FACIT-F were 0.834 and 0.835, respectively, for MS, 0.877 and 0.833 for NMOSD, and 0.925 and 0.883 for MOGAD. Conclusions These results suggest that the MFIS-K, FSS, and FACIT-F are useful and valuable assessment instruments for evaluating fatigue in Korean patients with MS, NMOSD, and MOGAD.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0