메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
유기섭 (한양대학교)
저널정보
한국데이터전략학회 Journal of Information Technology Applications & Management Journal of Information Technology Applications & Management Vol.32 No.1
발행연도
2025.2
수록면
1 - 13 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This study conducts a comparative analysis of various models for predicting Bitcoin prices. The models utilized in this research include the Gated Recurrent Unit (GRU), Long Short-Term Memory (LSTM), and Random Forest. Their performance was evaluated using key metrics such as Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and R-squared (R²). The findings reveal that the GRU model outperformed the other two models, achieving an R² value of 0.9301, which indicates its superior ability to explain the data. The LSTM model demonstrated relatively high explanatory power with an R² of 0.8252, yet it exhibited lower predictive accuracy compared to the GRU. On the other hand, the Random Forest model recorded the lowest MAE (1557.44) and RMSE (1766.95), reflecting strong short-term prediction capabilities. However, its R² of 0.6110 highlighted limitations in capturing the intricate temporal patterns of the dataset. The significance of this study lies in several aspects. First, it empirically demonstrates that the GRU model, with its more streamlined architecture, can achieve superior predictive performance compared to the LSTM and Rando Forest models. Additionally, while Random Forest showed promising results for short-term predictions, it underscored limitations in modeling the complexities of temporal data patterns. Future research should aim to incorporate broader datasets and integrate external economic variables to enhance predictive accuracy. Furthermore, the potential of ensemble approaches, combining diverse models, holds promise for further improving predictive performance in this domain.

목차

Abstract
1. 서론
2. 이론적 배경
3. 연구 방법론
4. 분석 결과
5. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-25-02-092458199