메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Hang Yang (Yamaguchi University) Ren Wu (Shunan University) Mitsuru Nakata (Yamaguchi University) Qi-Wei Ge (Yamaguchi University)
저널정보
대한전자공학회 IEIE Transactions on Smart Processing & Computing IEIE Transactions on Smart Processing & Computing Vol.14 No.2
발행연도
2025.4
수록면
152 - 164 (13page)
DOI
10.5573/IEIESPC.2025.14.2.152

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper discusses a machine learning-based approach to optimize acupuncture and moxibustion treatment (AMT). The goal is to develop a model that can offer personalized acupoints prescriptions for patients based on their symptoms, enhancing both the efficiency and effectiveness of treatment. A database comprising symptoms and acupoints prescriptions for 3,000 disease cases was used, and 11 machine learning algorithms were applied to learn from this data. The training process utilized 90% of the data for 5-fold cross-validation and 10% for testing to assess generalization ability. Intersection over Union (IoU) was chosen as the key evaluation metric for the models. The Seq2seq model with attention mechanism emerged as the best-performing algorithm, achieving an IoU of 95.72% on cross-validation and 95.33% on the test set. These results suggest that using Seq2seq with attention can significantly reduce subjectivity in acupoint selection and increase the efficiency of AMT. This approach provides a promising data-driven method for improving treatment precision and saving time in clinical settings.

목차

Abstract
1. Introduction
2. AMT and Machine Learning
3. Methodology
4. Experimental Results and Analysis
5. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0