메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 2차원 영상에서 3차원 깊이정보를 추출하기 위해서 진화연산 알고리즘을 적용한 고속 3차원 모델 추출 기법을 제안한다. 진화연산 알고리즘은 자연 선택과 개체군 유전학에 기반한 생물학적 진화 과정을 통해 최적의 해를 찾는 효율적인 탐색 기법이다. 기존의 스테레오 정합 방법에서 생성되어진 2차원 깊이 정보인 변이 맵은 경계 부근에서 애매한 결과를 도출함으로써 변이의 세밀하고 정확한 정보를 잃어 실영상과는 다소 차이를 갖는다. 본 논문에서는 소형 유전자 알고리즘을 스테레오 정합 환경에 맞게 변형시키고, 생성된 변이 맵의 모호성을 해결하기 위해 이전 세대의 변이 맵으로부터 경계를 검출한 변이 경계정보에서 이웃한 화소의 변이 복잡도를 측정하여 복잡도에 따라 적응적 윈도우를 결정하여 정합에 사용하였다. 실험을 통해 제안한 방식이 이완 처리를 포함한 기존의 정합 방식보다 변이 맵 생성에 있어 보다 상세하고 매끄러운 변이 결과를 얻을 수 있었다.

목차

요약

Abstract

1. 서론

2. 개체군 기반 증가 학습 알고리즘

3. 제안한 스테레오 정합 알고리즘

4. 실험 및 고찰

5. 결론

참고문헌

저자소개

참고문헌 (7)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017931692