메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국식품영양과학회 Journal of Food Science and Nutrition Journal of Food Science and Nutrition Vol.4 No.4
발행연도
1999.12
수록면
215 - 220 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The Physical properties of corn starch were investigated by scanning electron microscopy, X-ray diffractometry and differential scanning calorimetry during the formation of enzyme-resistant starch (RS). Samples were studied in their native states and after annealing at 50, 55, 60 and 65℃ in excess water (starch : water=1 : 3) for 48 hr. Starch granules became smaller and more rounded after annealing than in their native state. Annealing did not change the X-ray profile of native corn starch. After autoclaving-cooling cycles, native starch lost most of its crystallinity but annealed ones showed some of their crystallinity left as diffuse or poor B-type, which didn’t relate to increasing RS yields. During formation of RS, however, both native and annealed starches changed their X-ray profile from A-type to poor B-type of retrograded amylose. Annealing caused an increase in gelatinization temperature and enthalpy, but a narrowing of gelatinization temperature range. Only starch annealed at 65℃, however, showed a decrease in enthalpy even though its gelatinization temperature increased, which appeared to be due to the partial gelatinization in the amorphous region during annealing. Peak height index (PHI), the ratio of Δ H to Tp-To, increased by annealing. PHI values, therefore, showed the possibility as an indicator to predict RS yield which cannot be differentiated by differential scanning calorimetry and X-ray diffraction data.

목차

Abstract

INTRODUCTION

MATERIALS AND METHODS

RESULTS AND DISCUSSION

ACKNOWLEDGEMENTS

REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-511-018075295