메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국음성학회 음성과학 음성과학 제12권 4호
발행연도
2005.12
수록면
31 - 42 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Recently, Gaussian Mixture Model(GMM), a special form of CHMM, has been applied to speaker identification and it has proved that performance of GMM is better than CHMM. Therefore, in this paper the speaker models based on GMM and a new GMM using the modified EM algorithm are introduced and evaluated for text-independent speaker identification. Various experiments were performed to evaluate identification performance of two algorithms. As a result of the experiments, the GMM speaker model attained 94.6% identification accuracy using 40 seconds of training data and 32 mixtures and 97.8% accuracy using 80 seconds of training data and 64 mixtures. On the other hand, the new GMM speaker model achieved 95.0% identification accuracy using 40 seconds of training data and 32 mixtures and 98.2% accuracy using 80 seconds of training data and 64 mixtures. It shows that the new GMM speaker identification performance is better than the GMM speaker identification performance.

목차

ABSTRACT

1. 서론

2. GMM 화자식별 시스템

3. 수정된 EM 알고리즘을 적용한 GMM 화자식별 시스템

4. 실험 및 결과

5. 결론

참고문헌

저자소개

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-701-015316502