메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
궤적(trajectory) 데이타는 실세계 어디에서든지 쉽게 찾아볼 수 있다. 최근 들어, 위성, 센서, RFID, 비디오 및 무선 통신 기술의 발전으로 말미암아 이동 객체를 체계적으로 추적하고, 많은 양의 궤적 데이타를 수집할 수 있게 되었다. 이에 따라, 궤적 데이타의 분석에 대한 필요성이 점차 증대되고 있다. 본 논문에서는 대규모 궤적 데이타를 위한 마이닝 툴을 개발한다. 본 마이닝 툴에서는 가장 널리 사용되는 마이닝 연산인 집단화(clustering), 분류(classification), 이상치 발견(outlier detection)을 제공한다. 궤적 집단화는 공통적인 이동 패턴을 발견하며, 궤적 분류는 궤적에 기반하여 이동 객체의 범주를 예측하며, 궤적 이상치 발견은 나머지 궤적들과 크게 다르거나 일관적이지 않은 궤적을 발견한다. 본 마이닝 툴의 가장 큰 장점은 데이타 마이닝 도중에 부분 궤적 정보를 활용한다는 점이다. 본 마이닝 툴의 우수성은 다양한 실제 궤적 데이타 셋을 사용하여 입증되었다. 본 논문의 결과로 궤적 데이타 마이닝을 위한 실용적인 소프트웨어를 개발하였고 많은 실제 응용에 적용될 수 있을 것이라 사료된다.

목차

요약
Abstract
1. 서론
2. 궤적 데이타 마이닝 알고리즘
3. 궤적 데이타 마이닝 툴(tool)
4. 기존 집단화(clustering) 알고리즘 개선
5. 관련 연구
6. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0