메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
박성은 (서울대학교) 이동주 (서울대학교) 강민석 (서울대학교) 이상구 (서울대학교)
저널정보
Korean Institute of Information Scientists and Engineers 한국정보과학회 학술발표논문집 한국정보과학회 2010 한국컴퓨터종합학술대회 논문집 제37권 제1호(C)
발행연도
2010.6
수록면
122 - 125 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
사용자와 취향이 비슷한 사용자를 찾고, 이 유사 사용자가 선호한 아이템을 추천하는 협력적 필터링 방식은 일반적으로 많이 사용되는 추천 방식이다. 하지만 협력적 필터링 방식은 어떤 상황적 요소도 고려하지 않아 모든 상황에서 동일한 추천 결과를 제시하게 된다. 반면, 상황을 고려한 추천 방식은 다른 상황에서 그 상황에 적합하다고 판단되는 추천 리스트를 보여주는 다양성을 가지지만 개인의 선호를 반영하지 못하는 한계를 가진다. 이에 협력적 필터링 방식과 상황에 따른 추천 방식을 함께 고려하려는 시도가 있다. 본 논문에서는 시간 상황에 따른 음악 추천 시, 전체 상황에서 가장 유사한 사용자를 찾고 이 유사 사용자의 현재 상황에서의 선호 아이템을 추천하는 모델을 제시하고 실험을 통하여 이 모델의 한계와 실용 가능한 상황을 제시한다.

목차

요약
1. 서론
2. 관련 연구
3. 협력적 필터링과 상황인지를 사용한 추천 모델
4. 실험
5. 결론
6. 참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2010-569-003118215