메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Muhammad Ilyas (University of Science and Technology(UST)) Seung-Ho Baeg (Korea Institute of Industrial Technology(KITECH)) Sangdeok Park (Korea Institute of Industrial Technology(KITECH))
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2015
발행연도
2015.10
수록면
213 - 218 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Position and attitude estimation of helmet-mounted imaging devices e.g. camera/lidar is difficult in unstructured indoor environment due to lack of conventional localization systems, e.g. RF, Ultrasonic, UWB and Wi-Fi signals, usually available in modern office-like buildings. In this work, we use single MEMS IMU fitted on foot, which when combined with zero-velocity updates (ZUPT) in Extended Kalman filter estimation framework at every foot step, provides very accurate position estimates, regardless of the user and environment. We also present a novel method to reduce the error drift in ZUPT-only position estimates by employing the pitching motion of the foot during the swing phase. Another small IMU is attached on helmet, which can provide attitude information of imaging device at most at its own. However, for proper mapping applications, both position and attitude information of the imaging device is required at high rate, which is difficult to obtain from helmet IMU alone. To get complete pose information of the imaging device, we make use of the so called, ‘Transfer Alignment’ techniques, borrowed from avionics community. Experimental results show that poses of the imaging device is obtained with sufficient accuracy for mapping application without any extra sensors network aiding.

목차

Abstract
1. INTRODUCTION
2. FOOT-MOUNTED INS MODEL
3. FOOT-MOUNTED INS AIDED WITH ZERO-VELOCITY UPDATES AND FOOT-PITCHING VELOCITY
4. DATA FUSION
5. EXPERIMENTAL RESULTS
6. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-569-001910888