메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
최정민 (건국대학교)
저널정보
한국주거환경학회 주거환경 住居環境 통권 제14권 제4호 (통권 제34호)
발행연도
2016.12
수록면
233 - 251 (19page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This study applied a variety of multi-variate analysis method and investigated a possibility of Chernoff Face graph as an effective statistical visualization tool for Real estate Consumer Psychology Index (RCPI). The findings of this study are as following. Firstly, this paper shows the possibility of applying Chernoff Face to RCPI on time series and regional comparison which makes it clearly recognize differences, although Chernoff Face slightly changes by an arbitrary parameter setting. It was also suggested that excessive many comparisons of Chernoff Face in a graph may reduce the ability of recognition and effectiveness. Secondly, an interesting pattern was detected on two dimensional space of MDS (Multi-Dimensional Scaling) where a count-clock wise orientation on t ime series of RCPI was c ircled. This pattern can be interpreted as a result of reflection of real estate market’s characteristic which has an economic cycle: a bull and bear market on horizontal axis. Thirdly, it was proposed that RCPI can be effectively visualized by clusters in terms of linking Chernoff Face to Cluster Analysis. As a result, each Chernoff Face illustrates each cluster’s characteristics usefully where resulting clusters were categorized by Clustering Analysis. Fourthly, it was presented that regional differences can be effectively compared through a combination of GIS mapping and Chernoff Face. At this time, a comparison should be made on the level of metropolitan council, not local government due to recognition ability.

목차

Abstract
Ⅰ. 서론
Ⅱ. 이론적 배경 및 분석 개요
III. 체르노프 그래프를 이용한 부동산심리지수의 가시화
Ⅳ. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2017-595-001997810