메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Chong Hak Park (Yonsei University) Hyun Jun Lee (Yonsei University) Kyong Joo Oh (Yonsei University)
저널정보
계명대학교 자연과학연구소 Quantitative Bio-Science Quantitative Bio-Science Vol.36 No.2
발행연도
2017.11
수록면
111 - 117 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Investors have long sought to manage losses when they construct portfolios in a given investment environment. It has been particularly crucial for institutional investors, such as pension funds, to manage downside risks because they are often exposed to risks inherent in establishing strategic asset allocations over a long-term investment horizon. Therefore, many previous studies by practitioners and academics in the investment world have examined risk measurement and management with a downside risk perspective. In this study, we propose a portfolio management strategy that could maximize a downside risk-adjusted return, the Sortino ratio, utilizing the genetic algorithm and three downside risk measurements, namely semi-deviation, win-loss ratio, and skewness. Using this investment strategy, we aim to reduce the frequency of negative returns to the extent possible so that the portfolio return distributions ultimately become more positively skewed. For this empirical study, we used six asset classes, and compared six different investment strategies. From the experimental results using data from June 8, 2007 to June 30, 2017, we find that the proposed model can successfully increase downside risk-adjusted returns and construct right-skewed portfolios, which are desirable properties for loss-averse long-term investors.

목차

ABSTRACT
1. Introduction
2. Research Background
3. Proposed Model
4. Experimental Results
5. Conclusion
References

참고문헌 (12)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0