메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이윤정 (대구가톨릭대학교)
저널정보
동북아시아문화학회 동북아 문화연구 동북아 문화연구 제56집
발행연도
2018.9
수록면
145 - 161 (17page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Japan has been short of working youths due to the declining birth rate and the fact that baby boomers are retiring during the current baby boom.
In addition, the government has selected overseas employment training institutions such as K-Move School and ChongHyeJin Program(The youth employment business) to implement programs for human resources development overseas, especially those in Japan, where IT-related programs were the most common.
ITmedia, the IT comprehensive information portal, collected IT-related articles in January 2017 and February 2017, and analyzed the vocabulary, which is considered to be highly correlated with IT-related business, by word and composition. The classified vocabulary is described, and the ratios of the number of vocabulary in the top 20th, 50th and 100th positions of the number of different words in the number of words are investigated to calculate a cover rate. According to the analysis of vocabulary by word type, the most kanji words were 54.2%, foreign words were 31.7% for the next time, proper Japanese words were 11.8%, mixed words were 2.3%, and Chinese characters were more frequently used. Thus, by deciding the priority order of the vocabulary education from the vocabulary with the highest frequency, the technical knowledge of the IT vocabulary can be cultivated.
In the actual curriculum, there are many aspects of Japanese language education, but even though the Japanese language has reached a high standard of proficiency in the Japanese language test, the IT industry does not need to provide the necessary technical vocabulary for the Japanese language.

목차

Ⅰ. 서론
Ⅱ. 선행연구
Ⅲ. 연구목적 및 방법
Ⅳ. 어종별 어구성의 분석
Ⅴ. 결론
참고문헌
논문초록

참고문헌 (7)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0