메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
국제언어인문학회 인문언어 인문언어 제20권 제1호
발행연도
2018.1
수록면
157 - 177 (21page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The aim of the paper is to develop classification models of the prompts of the TOEFL essays in the TOEFL11 corpus. The corpus is a collection of TOEFL essays written in response to one of 8 prompts of various topics and by test-takers of different proficiency levels who are from 11 different countries. The number of essays is 11,000 for each language (that is, 121,000 in total). The paper aims at developing prompt classification models using an automatic method of Support Vector Machine (SVM), to which a number of different features are fed: The input features to the model include high frequency words which are observed in the raw essay texts, and high frequency nouns which are extracted from a POS-tagged essay texts. High frequency nouns among three different proficiency levels are also used as input features. The results indicated that even though high frequency words taken from raw textual materials performed quite well with an accuracy of 90.4%, the words tagged as nouns did even better with an accuracy of 97.3%. The inspecting of high frequency nouns revealed that the words were independently distributed among prompts with nearly no overlapping across different prompts. The classification test of essay samples of different proficiency levels confirmed that the accuracy rate of automatically classifying prompts by observing the frequency occurrence of nouns in texts increased in general as the proficiency levels of the essay samples increase. The paper serves as a foundation for further details studies on topic modeling used by learners of English.

목차

등록된 정보가 없습니다.

참고문헌 (13)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0