메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
이용원 (서울대학교)
저널정보
팬코리아영어교육학회 영어교육연구 영어교육연구 제28권 제1호
발행연도
2016.1
수록면
101 - 122 (22page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The current study reports the findings from Phase 2 of a larger research study undertaken toinvestigate the feasibility of using generic scoring models for e-rater in the context of scoringessays for independent writing tasks for TOEFL CBT and TOEFL iBT. In Phase 1, sixdifferent variants of generic and hybrid scoring models of e-rater were created based ontransformed writing data from three different samples of TOEFL CBT prompts (n1=20, n2=20,n3= 40) with the help of ETS (Educational Testing Service) staff and then evaluated on aseparate sample of seven TOEFL CBT prompts (Lee, 2016). In the present investigation, thesesix generic/hybrid models were used, along with prompt-specific models, to score a total of3,126 essays written for two TOEFL iBT independent writing tasks from a field study and theirperformance was evaluated. Results of the analysis showed that (a) there were relatively smallscore variations among different automated scoring models and (b) similar levels of scoreagreement were achieved between the human-human rater pair and various human-automatedrater pairs, although the prompt-specific model behaved most similarly to the human raters. Interms of criterion-related validity of scores, the human rater scores turned out to be somewhatbetter indicators of test-takers’ overall ESL (English as a Second Language) languageproficiency than the automated scores in general. Nevertheless, the comparative advantage invalidity of human rater scores (over automated scores) seemed to diminish significantly, whenmore direct writing measures, such as scores for TOEFL CBT independent writing tasks, wereused as criterion measures.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0