메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국원자력학회 Nuclear Engineering and Technology Nuclear Engineering and Technology 제49권 제7호
발행연도
2017.1
수록면
1,555 - 1,562 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
A loose part monitoring system is used to identify unexpected loose parts in a nuclear reactor vessel orsteam generator. It is still necessary for the mass estimation of loose parts, one function of a loose partmonitoring system, to develop a new method due to the high estimation error of conventional methodssuch as Hertz's impact theory and the frequency ratio method. The purpose of this study is to propose amass estimation method using a Markov decision process and compare its performance with a methodusing an artificial neural network model proposed in a previous study. First, how to extract featurevectors using discrete cosine transform was explained. Second, Markov chains were designed withcodebooks obtained from the feature vector. A 1/8-scaled mockup of the reactor vessel for OPR1000 wasemployed, and all used signals were obtained by impacting its surface with several solid sphericalmasses. Next, the performance of mass estimation by the proposed Markov model was compared withthat of the artificial neural network model. Finally, it was investigated that the proposed Markov modelhad matching error below 20% in mass estimation. That was a similar performance to the method usingan artificial neural network model and considerably improved in comparison with the conventionalmethods.

목차

등록된 정보가 없습니다.

참고문헌 (16)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0