메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
문성인 (한국원자력연구원) 한성진 (한국원자력연구원) 강두 (한국원자력연구원) 한순우 (한국원자력연구원) 김경모 (한국원자력연구원) 유용균 (한국원자력연구원) Joseph Eom (MathWorks Korea)
저널정보
한국원자력학회 Nuclear Engineering and Technology Nuclear Engineering and Technology 제53권 제4호
발행연도
2021.4
수록면
1,199 - 1,209 (11page)
DOI
https://doi.org/10.1016/j.net.2020.10.009

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The detection of unexpected loose parts in the primary coolant system in a nuclear power plant remainsan extremely important issue. It is essential to develop a methodology for the localization and massestimation of loose parts owing to the high prediction error of conventional methods. An effectiveapproach is presented for the localization and mass estimation of a loose part using machine-learningand deep-learning algorithms. First, a methodology was developed to estimate both the impact locationand the mass of a loose part at the same times in a real structure in which geometric changes exist. Second, an impact database was constructed through a series of impact finite-element analyses (FEAs). Then, impact parameter prediction modes were generated for localization and mass estimation of asimulated metallic loose part using machine-learning algorithms (artificial neural network, Gaussianprocess, and support vector machine) and a deep-learning algorithm (convolutional neural network). The usefulness of the methodology was validated through blind tests, and the noise effect of the trainingdata was also investigated. The high performance obtained in this study shows that the proposedmethodology using an FEA-based database and deep learning is useful for localization and mass estimationof loose parts on site.

목차

등록된 정보가 없습니다.

참고문헌 (24)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0