메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이우창 (계명대학교) 김양석 (계명대학교) 김정민 (계명대학교) 이충권 (계명대학교)
저널정보
한국산업정보학회 한국산업정보학회논문지 한국산업정보학회논문지 제25권 제2호
발행연도
2020.4
수록면
57 - 72 (16page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
철광석의 가격은 여러 국가와 기업들의 수요와 공급에 따라서 높은 변동성이 지속되고 있다. 이러한 비즈니스 환경에서 철광석의 가격을 예측하는 것은 중요해졌다. 본 연구는 머신러닝 기법을 이용하여 철광석이 거래되는 시점으로부터 한 달 전에 철광석 거래가격을 미리 예측하는 모형을 개발하고자 하였다. 예측 모형은 시계열 데이터를 활용한 예측 방법론으로 많이 활용되고 있는 시차 분포 모형과 다층신경망 (Multi-layer perceptron), 순환신경망 (Recurrent neural network), 그리고 장단기 기억 네트워크 (Long short-term memory)와 같은 딥 러닝(Deep Learning) 모형을 사용하였다. 측정지표를 통해 개별 모형을 비교한 결과에 따르면, LSTM 모형이 예측 오차가 가장 낮은 것으로 나타났다. 또한, 앙상블 기법을 적용한 모형들을 비교한 결과, 시차분포와 LSTM의 앙상블 모형이 예측 오차가 가장 낮은 것으로 나타났다.

목차

요약
Abstract
1. 서론
2. 선행 연구
3. 변수의 설정
4. 본론
5. 결론
References

참고문헌 (35)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-530-000583769