메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국디자인학회 Archives of Design Research Archives of Design Research Vol.33 No.2 (Wn.134)
발행연도
2020.5
수록면
39 - 55 (17page)
DOI
10.15187/adr.2020.05.33.2.39

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Background : Advances in data science have allowed us to investigate human emotions based on the learning of the data set, with current technology enabling us to research the relationship between the form elements of graphic images and human emotional responses. However, to date, studies have been limited to photography, meaning that the practice of graphic design remains unexplored.
Methods : We used a design workshop to exploit graphic elements that are perceptually relevant. By identifying and quantifying the elements of each image (N = 320), we were able to define the machine learning features. We collected emotion assessments relating to the images with regard to pleasure, arousal, and dominance using a Likert scale, and combined them with the features to build a dataset. The assessments were carried out twice to form a baseline of accuracy. Applying machine learning methods such as kknn, svmRadial, and C5.0, we modeled algorithms that predict individuals’ emotional assessments of specific aspects.
Results : Human assessments were repeatedly in the range of 62.81–80.93%, and a prediction accuracy between 52.26–80.32% was achieved. In particular, the prediction accuracy of pleasure and dominance aspects was relatively high across all individuals.
Conclusions : This study demonstrates the use of machine learning-driven algorithm modeling to predict assessments of emotion based on graphical elements of movie posters. Overall, predictions of pleasure and dominance aspects showed higher accuracy than those of the arousal aspect. Limitations and further investigations are discussed to obtain not only a more accurate but also a more insightful estimation.

목차

Abstract
1. Introduction
2. Design Workshop
3. Feature Extraction of Movie Posters toward the Machine-Learning Algorithm Modelling
4. Algorithm modeling using machine-learning methods
5. Discussion and conclusion
References

참고문헌 (35)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0