메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국복합재료학회 Composites Research Composites Research 제33권 제3호
발행연도
2020.1
수록면
108 - 114 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
Piecewise Integrated Composite (PIC) 보는 하중 유형에 따라 구간을 나누어, 각 구간마다 하중 유형에 강한복합재료의 적층 순서를 배열한 보이다. 본 연구는 PIC 보의 구간을 머신 러닝의 일종인 k-NN(k-Nearest Neighbor) 분류를 통해 나누어 기존에 제시되었던 PIC 보에 비해 우수한 굽힘 특성을 갖게 하는 것이 목적이다. 먼저, 알루미늄 보의 3점 굽힘 해석을 통하여 참조점에서의 3축 특성(Triaxiality) 값 데이터를 얻었고, 이를 통해 인장, 전단, 압축의 레이블을 가진 학습 데이터가 만들어진다. 학습 데이터를 통해 각 면마다 독립적인 k-NN 분류 모델을 구성하는 방법(Each plane)과 전체 면에 대한 k-NN 분류 모델을 구성하는 방법(one part)을 이용하여 k-NN 분류 모델을 생성하였고, 하이퍼파라미터의 튜닝을 통하여 다양한 하중 충실도를 도출하였다. 가장 높은 하중 충실도를 가진 k-NN 분류 모델을 기반으로 보를 매핑(mapping)하였고, PIC 보에 대하여 유한요소 해석을 진행한 결과, 기존에 제시되었던 PIC 보에 비해 최대하중과 흡수 에너지가 커지는 특성을 보였다. 하중 충실도를 수동으로 조절하여 100%로 만든 PIC 보와 비교하였을 때, 최대하중과 흡수에너지가 미소한 차이가 나타났으며 이는 타당한 하중충실도로 보여진다.

목차

등록된 정보가 없습니다.

참고문헌 (12)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0