메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
지승민 (공주대학교) 함석우 (공주대학교(천안공과대학)) 최진경 (공주대학교) 전성식 (공주대학교)
저널정보
한국복합재료학회 Composites Research Composites Research 제34권 제6호
발행연도
2021.12
수록면
394 - 399 (6page)
DOI
https://doi.org/10.7234/composres.2021.34.6.394

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Piecewise Integrated Composite(PIC) 보는 구간 조합 복합재 보로 구간 마다 적층 각도 및 순서를 다르게 적용하여 보의 강성과 강도를 향상시킬 수 있는 복합재료 보의 새로운 개념이다. 본 연구에서는 보의 거동을 고려하기 어려운 2차원 학습 데이터를 대신하여 3차원 학습 데이터가 적용된 머신 러닝 모델을 이용한 PIC 보가 제안되었다. 학습 데이터 및 훈련 데이터 셋(Training Data Set)은 지정된 참조 요소에서 3축 특성 값(Stress Triaxiality Factor)을 추출하여 세 가지 하중 유형(인장, 압축 그리고 전단)으로 분류되어 구성되었고, 이에 따른 하이퍼파라미터(Hyperparameter)가 제안되었다. 이를 통하여 예측된 PIC 보로 유한 요소 해석이 진행되었고 3차원 학습 데이터로 예측된 모델이 처짐 변형량이 감소된 것이 확인되었다. 이를 통해 3차원 학습 데이터를 이용하는 것이 경쟁력있는 것으로 판단되었고 처짐 변형량의 감소로 타당성이 검증되었다.

목차

등록된 정보가 없습니다.

참고문헌 (12)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0