메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
지승민 (공주대학교) 함석우 (공주대학교(천안공과대학)) 전성식 (공주대학교)
저널정보
한국복합재료학회 Composites Research Composites Research 제35권 제5호
발행연도
2022.11
수록면
303 - 308 (6page)
DOI
10.7234/composres.2022.35.5.303

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
PIC(Piecewise Integrated Composite)는 적층 복합재의 기계적 특성을 향상시키기 위해 다양한 적층 순서를 모자이크 방식으로 할당하여 복합 구조를 설계하는 새로운 개념이다. 또한 머신 러닝은 인공 지능의 하위 범주로, 컴퓨터가 데이터에서 지속적으로 학습하고 데이터를 기반으로 예측하는 능력을 개발한 다음 추가 프로그래밍 없이 조정하는 과정을 의미한다. 본 연구에서는 구조적 강성을 높이기 위해 기계학습을 기반으로 넓고 얇은 LCD 디스플레이를 운반 및 이송하기 위한 테이퍼 박스형 빔형 PIC 로봇 암이 설계되었다. 필수 학습 데이터는 예비 FE해석 과정에서 유한 요소 모델 중 의도적으로 배치된 참조 요소에서 수집되었다. 또한 인장, 압축 또는 전단과 같은 지배적인 외부 하중 유형을 판단하기 위해 각 유한 요소에 대한 3축 특성 값을 얻었다. 학습 데이터를 이용하여 머신 러닝 모델을 훈련하고 평가되었으며, 정확도 레벨을 만족한 머신 러닝 모델을 이용해 요소의 로딩 유형을 예측하였다. 특정 하중 유형에 대해 우세한 것으로 알려진 세 가지 유형의 적층 각도 순서가 PIC 로봇 암에 모자이크 방식으로 할당되었습니다. 이후 굽힘형 FE 해석을 수행한 결과 PIC 로봇 암이 기존의 단일 적층 각도 순서로 제작된 복합재 로봇 암에 비해 강성이 증가된 것으로 나타났다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0