메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Kwon, So-Yeon (Department of Hygienic Chemistry, College of Pharmacy, Kyung Hee University) Choung, Se-Young (Department of Hygienic Chemistry, College of Pharmacy, Kyung Hee University)
저널정보
한국응용약물학회 The journal of applied pharmacology : the official journal of the Korean Society of Applied Pharmacology The journal of applied pharmacology : the official journal of the Korean Society of Applied Pharmacology 제13권 제2호
발행연도
2005.1
수록면
107 - 112 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Excessive drinking causes 'alcohol hangover' within 8-16 hours. The cause of 'hangover' has not been elucidated exactly until now, but it is reported that it is caused by the creation of blood ethanol and acetaldehyde as ethanol metabolites. In this study vinegar extract of wood (VE) or OC-1, to which the powder extract of green tea leaves extract is added, was administered to the rats 30 minutes before the oral administration of ethanol (3 g/kg) and the blood ethanol and acetaldehyde concentration was measured in order to evaluate the efficacy of the beverage material for detoxification. As a result, the blood ethanol concentration in the group of the VE-1(vinegar crude extract) and VE-2 (double diluted solution) is statistically lower (P,0.05) than the exclusive alcohol administered control group. The blood acetaldehyde concentration of all groups of VE and OC-2, which is the double dilution of OC-1, is statistically low after 7 hours following ethanol administration. Especially, the AUC value of OC-2 group is statistically low compared to the control group. Accordingly, it indicates the conclusion that VE and OC-1, reducing the blood ethanol and acetaldehyde concentration which are two leading factors of 'hangover' after drinking, and worthwhile to be developed as beverage materials to eliminate 'hangover'.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0