메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
유준상 (경북대학교) 강보영 (서울대학교)
저널정보
한국멀티미디어학회 멀티미디어학회논문지 멀티미디어학회논문지 제24권 제1호
발행연도
2021.1
수록면
40 - 50 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Science museum are dealing with exhibits on field of changing science and technology, and previous research suggested that exhibits replacement should carried out at least every 5 years. In order to efficiently replace exhibits within a limited budget, various studies analyzed visitors’ preferences to exhibits. Recently, studies use various technologies to collect the data on visitors" preferences automatically, but almost of studies had a high dependency on their visitors such as visitors needed to carry specific sub-devices in the museums for gathering data. As complementing the limitations of previous research, this study introduces the improved method which is able to automatically collect and quantify visitors’ preferences to exhibits using TensorFlow, a deep learning technology. By the proposed analysis method, it was possible to collect 2,520 data of visitors’ experience on exhibits in totality. Based on collected data, attraction power and holding power indicating the preference of visitors on exhibits were able to be calculated. The result also confirmed antecedent research conclusion that the attraction power and holding power of the exhibit which consists of 3 dimensional structures work are higher than other exhibits. As a conclusion, the proposed method will provide more convenient data collection method for detecting visitors’ preference.

목차

ABSTRACT
1. 서론
2. 선행 연구
3. 제안한 텐서플로 기반 전시품 선호도 분석방법
4. 실험 결과
5. 결론
REFERENCE

참고문헌 (24)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0