메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Ye, Ding Yu (Jeonbuk National University) Cho,Dong Min (Jeonbuk National University)
저널정보
한국전시산업융합연구원 한국과학예술융합학회 한국과학예술융합학회 Vol.39 No.3
발행연도
2021.6
수록면
269 - 288 (20page)
DOI
10.17548/ksaf.2021.06.30.269

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The purpose of this study is to enrich and deepen the theoretical framework of Continuous Use of Information System,in order to reveal and predict the behavior of users of short video platforms. Moreover, it can also provide some theoretical reference for all kinds of short video platforms to insight into users’ psychological needs and enhance user loyalty.
Therefore, Based on the Information System Continuous Use Model, this paper integrates Expectation Confirmation Theory and Flow Experience Theory, taking Chinese TikTok users as the research object, constructs the conceptual model of TikTok users’ loyalty, and analyzes the questionnaire data by using statistical analysis software Amos, which proves the validity of the research hypothesis and model.
The research results and contents are as follows:firstly, TikTok has achieved success in terms of sense of belonging,perceived entertainment and user satisfaction, which directly and significantly affect the user’s intention of continuous use, thus obtaining higher user loyalty.
Secondly, to further improve user loyalty, TikTok operators should improve the perceived usefulness of short video content and the perceived interaction of TikTok users.
Through this research, a new conceptual model of TikTok users’ loyalty was created which can give a benefit to the whole short video platform operators for improving the user retention rate.

목차

Abstract
Ⅰ. Introduction
Ⅱ. Theoretical Background
Ⅲ. Research Hypothesis and Theoretical Model
Ⅳ. Empirical analysis
Ⅴ. Conclusion
Reference

참고문헌 (51)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-600-001836435