메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Yazır Devran (Karadeniz Technical University) Şahin Bekir (Norwegian University of Science and Technology) Yip Tsz Leung (The Hong Kong Polytechnic University)
저널정보
한국해운물류학회 The Asian Journal of Shipping and Logistics The Asian Journal of Shipping and Logistics Vol.37 No.1
발행연도
2021.1
수록면
91 - 104 (14page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
This paper extends the EVAMIX (EVAluation of MIXed Data) as an exemplary multi-criteria decisionmaking method in three perspectives. First,the problem is investigated in a fuzzy environment. Secondly, multiple decision-makers involve in decision-making process. It allows the moderator to benefitthe opinions of multiple experts. Third, experts are assigned a coefficient considering their professional career represented in years. In the conventional approach, the experts have assumed identical, but expert prioritization deals with the instability. The extensions applied in this study are currently available in the literature, and it is used for the first time in the EVAMIX method. This method can be applied to decisionmaking problems in any research field. A study is carried out to combine the pre-determined types of ships with reliable quantitative and qualitative criteria and create data for new investors and shipowners in the selection of ships using a novel mathematical approach. As a result of the study, preferences are modelled for candidate ships, and database and value options are presented to decision-makers, ship owners, and investors. The qualitative and quantitative data discussed in this selection process to support the decision-making process and can be designed appropriately to be used in similar selection problems. The most suitable vessel to be selected from the candidate’s vessels is carried out based on the existing criteria being evaluated; therefore, it is a reference for similar methodologies.

목차

등록된 정보가 없습니다.

참고문헌 (104)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0