메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김인혜 (한국교원대학교) 최숙기 (한국교원대학교)
저널정보
한국교원대학교 뇌기반교육연구소 Brain, Digital, & Learning Brain, Digital, & Learning Vol.10 No.4
발행연도
2020.1
수록면
419 - 430 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
This study was conducted to examine the interaction patterns of high school students in online debate and to find ways to activate them. An online discussion was conducted for 3rd grade high school students, and data was measured based on the direction and number of comments. Using NetData, igraph, and ggplot2 of the R package, the number and density of the connect line, the Degree centrality, Betweenness centrality, Eigenvector centrality were measured, and interaction patterns were derived through visualization work. Through density, the degree of interaction of the group was checked, and the number of comments and the participation of all members were confirmed to be affected. Participants with a high Degree centrality of connection had a higher Degree centrality in sending and a high rate of rebuttal of comments. It was confirmed that Betweenness centrality and Eigenvector centrality influenced the interaction of all members. Based on this, it suggested the need for learning to clarify and refute the conditions of online debate as a way to promote online debate among high school students.

목차

등록된 정보가 없습니다.

참고문헌 (37)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0