메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
임상섭 (한국해양대학교) 윤희성 (해양수산개발원)
저널정보
한국해양비즈니스학회 해양비즈니스 해양비즈니스 제40호
발행연도
2018.1
수록면
159 - 180 (22page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
One of the characteristics of the shipping market is extreme volatility. The play in the volatile market requires players to make cautious decisions based on scientific analysis. Market risk management is of utmost importance in the shipping market and market forecasting is an important element in the management process. This paper deals with forecasting issues in the dry bulk shipping market. Despite the fact that bulk shipping is dominated by spot trading, there are few papers that apply scientific models to short-term forecasting. This paper employs recurrent neural networks that currently draws attention in time-series forecasting. More specifically, Elman neural networks and Jordan neural networks were applied to improve the forecasting performance over traditional econometric models and simple multi-layer perceptron models. Monthly observations of the BDI, BCI and BPI were used for spot forecasting. The result showed that the proposed two models outperformed the ARIMA model and the MLP model. The Elman model performed better for the time series with high volatility and the Jordan model demonstrated better performance for the time series with a modest volatility. The BDI is composed of sub-indices with varying levels of volatility. Hence in the case of the BDI forecast, the Jordan networks performed better than the Elman networks. The results will provide scientific grounds for chartering managers to make better decisions concerning the most active spot transactions.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0