메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Munim Ziaul Haque (Faculty of Technology Natural and Maritime Sciences University of South-Eastern Norway Horten Norway) Fiskin Cemile Solak (Department of Maritime Business Administration Fatsa Faculty of Marine Sciences Ordu University Ordu Turkey) Nepal Bikram (Faculty of Technology Natural and Maritime Sciences University of South-Eastern Norway Horten Norway) Chowdhury Mohammed Mojahid Hossain (Department of Port and Shipping Management Bangabandhu Sheikh Mujibur Rahman Maritime University Dhaka Bangladesh)
저널정보
한국해운물류학회 The Asian Journal of Shipping and Logistics The Asian Journal of Shipping and Logistics Vol.39 No.2
발행연도
2023.6
수록면
67 - 77 (11page)
DOI
10.1016/j.ajsl.2023.02.004

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Forecasting container throughput is critical for improved port planning, operations, and investment stra tegies. Reliability of forecasting methods need to be ensured before utilizing their outcomes in decision making. This study compares forecasting performances of various time series methods, namely auto regressive integrated moving average (ARIMA), seasonal ARIMA (SARIMA), Holt-Winter's Exponential Smoothing (HWES), and the Prophet model. Since forecast combinations can improve performance, simple and weighted combinations of ARIMA, SARIMA and HWES have been explored, too. Monthly container throughput data of port of Shanghai, Busan, and Nagoya are used. The Prophet model outperforms others in the in-sample forecasting, while combined models outperform others in the out-sample forecasting. Due to the observed differences between the in-sample and out-sample forecast accuracy measures, this study proposes a forecast performance metric consistency check approach for informed real-world applications of forecasting models in port management decision-making.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0