메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Si-Yu Zhang (Pukyong National University) Ze Lin (Pukyong National University) Wii-Joo Yhang (Pukyong National University)
저널정보
한국관광연구학회 관광연구저널 관광연구저널 제37권 제4호
발행연도
2023.4
수록면
85 - 94 (10page)
DOI
10.21298/IJTHR.2023.4.37.4.85

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Economic development is influenced by many factors, one of which is the inflation rate. The consumer price index (CPI) is a commonly used indicator for measuring the inflation rate. In recent years, CPI prediction has attracted the attention of many scholars due to its excellent measure of macroeconomic performance. It is very essential to develop an accurate and precise forecasting model. This research fitted and forecasted the CPI of restaurants and hotels in South Korea using the seasonal autoregressive integrated moving average (SARIMA) model. In contrast to other time series models, the SARIMA model incorporates the seasonal component of a time series to improve the accuracy of its forecasts. The time series data were obtained from the website of Statistics Korea (KOSTAT) for the monthly CPI of restaurants and hotels in South Korea from January 2010 to December 2022. Data were analyzed using R-Statistics software and EViews. In this paper, the best model was based on the results of mean absolute percentage error (MAPE) and R2. A detailed description of model selection and predictive accuracy is provided. The findings suggest that the proposed research approach achieves good prediction accuracy from a range of different SARIMA models. Therefore, the developed SARIMA model can be considered for forecasting of monthly CPI of restaurants and hotels in South Korea.

목차

Abstract
I. Introduction
II. Literature review
III. Methodology
IV. Results
V. Conclusion and implications
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-326-001353963