메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
정유진 (고려대학교)
저널정보
고려대학교 언어정보연구소 언어정보 언어정보 제26호
발행연도
2018.1
수록면
79 - 102 (24page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Eugene Chung. 2018. Lexico-Syntactic Structures of Spatial Expressions. Language Information, Volume 26. 79-102. This work aims to model a lexico-syntactic structure for various spatial configurations. In English, spatial expressions are similar to transitive verbs in the pattern where prepositions take arguments to describe spatial relationships. The meaning expressed by a spatial preposition indicates how its arguments physically relate to each other in space. The spatial preposition has two arguments, a Figure and a Ground. This study adapts Pustejovsky's (1991, 1995) argument structure and co-composition from the Generative Lexicon Theory in order to represent multiple configurations. Various features are employed to describe spatial relations and spatial entities. Arrangement features and physical relationship features are for spatial relations. Region features, dimensionality, and orientation features are utilized to provide fine-grained specification of spatial entities. The values for arrangements are CONTACT, ADJACENCY, OVERLAP, INCLUSION, SURROUNDING. Region feature takes one of SURFACE, BOUNDARY, TOP, BOTTOM, INTERIOR, EXTERIOR. For the dimensionality, we have 1DIM, 2DIM, 3DIM values. HORIZONTAL and VERTICAL are the values for the orientation feature. A locus structure is introduced to encode various spatial features that are related with words about spatial entities and spatial relations. A spatial preposition and its arguments construct spatial expressions. They compose phrasal level meanings through co-specification with the locus values in the loci structure. The proposed framework can be utilized to represent the formal rules of encoding spatial expressions.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0