메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
D. Kato (Doshisha University) N. Maeda (Doshisha University) T. Hirogaki (Doshisha University) E. Aoyama (Doshisha University) K. Takahashi (IHI Corporation)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2021
발행연도
2021.10
수록면
607 - 612 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Most industrial robots are unsuitable for variable production systems because they are taught using the teaching playback method. In contrast, the offline teaching method has been developed, but it has not progressed because of the low positioning accuracy. Therefore, several studies have proposed methods to calibrate for positioning errors using neural networks. However, it is difficult to identify the factors of positioning errors because the structure of neural networks is not clear. Herein, we applied the random forest method, which is a type of machine learning method, and constructed a prediction model for positioning errors. A large industrial robot was used, and three-dimensional coordinates of the end-effector were obtained using a laser tracker. The model to predict the positioning error from end-effector coordinates, joint angles, and joint torques was constructed using the random forest method, and the positioning error was predicted with high accuracy. The random forest analysis demonstrated that joint 2 was the primary factor of the X- and Z-axis errors. This suggested that the air cylinder used as an auxiliary to the servo motor of joint 2 was the error factor. The positioning error norm was reduced at all points using the proposed calibration.

목차

Abstract
1. INTRODUCTION
2. BASIC THEORY AND MACHINE LEARNING METHOD
3. EXPERIMENTAL DEVICE
4. EXPERIMENTAL METHOD
5. RESULTS AND DISCUSSION
6. CONCLUSIONS
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0